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Composite fermion liquid to Wigner solid transition
in the lowest Landau level of zinc oxide

D. Maryenko!, A. McCollam?, J. Falson34, Y. Kozuka3>, J. Bruin®4, U. Zeitler? & M. Kawasaki'3

Interactions between the constituents of a condensed matter system can drive it through a
plethora of different phases due to many-body effects. A prominent platform for it is a dilute
two-dimensional electron system in a magnetic field, which evolves intricately through var-
ious gaseous, liquid and solid phases governed by Coulomb interaction. Here we report on
the experimental observation of a phase transition between the composite fermion liquid and
adjacent magnetic field induced phase with a character of Wigner solid. The experiments are
performed in the lowest Landau level of a MgZnO/ZnO two-dimensional electron system
with attributes of both a liquid and a solid. An in-plane magnetic field component applied on
top of the perpendicular magnetic field extends the Wigner-like phase further into the
composite fermion liquid phase region. Our observations indicate the direct competition
between a composite fermion liquid and a Wigner solid formed either by electrons or
composite fermions.
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magnetic field B applied perpendicularly to a two-
dimensional charge carrier system modifies its density of
states and places the charge carriers on a ladder of discrete
Landau levels (LL). The Coulomb interaction between the
charged particles acting on the magnetic length scale I; = \/%/eB
can be tuned by varying the magnetic field strength. Thereby, the
high mobility carriers evolve through the various correlation
phases!. When the electrons occupy half of available states in the
lowest LL, e.g,, filling factor v = 1/2, the electrons prefer to reduce
their interaction by virtue of capturing two magnetic flux quanta
resulting in the emergence of new particles, called composite
fermions (CF)>3. These particles form a Fermi surface at v=1/2
and move in an effective field Beg= B — B, _ 1/, (Fig. 1, middle
panel) giving rise to magnetoresistance oscillations. At even lower
filling factors a Wigner solid, a crystalline phase of charged
particles (electrons or CF) driven by the repulsive Coulomb force
and yet another manifestation of many-body correlations,
emerges as a ground state of the electron system (Fig. 1).

Being in the lowest Landau level (LL) the electron system
experiences competition between the composite fermion liquid
phase and the magnetic field induced Wigner solid phase, which
manifests as a large magnetoresistance peak around or below v =
1/3*6. A liquid-solid transition may follow the Kosterlitz-Thouless
model, whereas the particles can form a hexatic phase character-
ized by bond-oriented nearest-neighbor ordering’-!!. An inter-
mediate phase of the liquid-solid transition may also take the form
of microemulsion phases associated with a liquid crystalline
phase!!-13, Departing from the liquid phase of CF at v=1/2, a
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Fig. 1 Schematic of the phases of a 2DES in a magnetic field: The different
phases of a two-dimensional electron system (2DES) in a magnetic field. At
zero magnetic field (bottom panel) the electrons are described as a weakly
interacting Fermi gas with a well-defined Fermi surface. In the half-filled
lowest LL, e.g., at filling factor v =1/2, the electrons reduce their mutual
interaction by attaching the two magnetic flux quanta, resulting in the
emergence of new particles, so-called composite fermions (middle
panel)23, These particles form a Fermi surface at v =1/2 and move in an
effective field Best = B — B, _ 1/, giving rise to magnetoresistance oscillations
known as the fractional quantum Hall effect (Fig. 2). At even lower filling
factors, a Wigner solid, a crystalline phase of electrons arranged by the
repulsive Coulomb force and another manifestation of many-body
correlations, becomes the ground state, which can be formed either by bare
electrons (top left) or composite fermions (top right)

formation of both a composite fermion Wigner solid and phase
transition to intermediate phases may appear feasible. The idea of
realizing a composite fermion Wigner solid was put forward in a
number of theoretical works!4-1°. Recent experiments focusing on
GaAs-based 2DES have been gradually accumulating evidence
pointing towards the realization of CF Wigner solid?0-24, Intui-
tively the CF crystal is stabilized when the CF of nearby liquid
states release two of their vortices to stabilize the crystal, whereas
the undressed particles retain their energetically favorable corre-
lations'8. Thus a two-flux CF crystal borders the four-flux com-
posite fermion liquid phase, whereas an electron crystal phase is
embedded in two-flux composite fermion liquid and forms
between filling factors v=1/3 and v=2/5 for a high enough LL
mixing!®. Thus the transition between the liquid and the solid can
be highly non-trivial and is realized in the lowest LL of a two-
dimensional charge carrier system by the transformation of the
underlying particle type.

Here, we study the magnetotransport in a ZnO heterostructure
(see: Methods) in the magnetic field region between the CF liquid
phase formed at v=1/2 and the high resistivity phase appearing
at higher field and exhibiting attributes of a Wigner solid?>2. LL
mixing, the ratio between electron—electron interaction energy
and the cyclotron energy, is 4.2 at v=1/2 in this heterostructure
and the magnetotransport in the region of interest features a
character of both CF liquid and crystalline phase. The presence of
such a region with the interlaced character highlights a non-trivial
nature of phase transition, the details of which can further be
masked by the inhomogeneous potential landscape arising from
inevitable crystallographic disorder. The transition between the
two phases can be tuned by the application of an in-plane mag-
netic field. As a result of the phase intermixture, the state at filling
factor v=1/2 can be formed by a composite fermion liquid and
some intermediate state arising in the course of liquid-solid
transition. Owning to a simple band structure of ZnO as com-
pared to p-type GaAs, this oxide material is an attractive platform
to access the competition between liquid and solid phases in the
fractional quantum Hall regime.

Results

Experiment in perpendicular magnetic field. Figure 2 shows a
full scan of the magnetotransport from 0T to 33 T applied per-
pendicular to the 2DES plane. Several fractional quantum Hall
states are observed around v=3/2, consistent with previous
results?® and, in addition, developing minima are observed at v =
9/5,12/7, 9/7, and 6/5. Furthermore, up to six fractional quantum
Hall states are observed on both sides of v = 1/2. Close inspection
of the transport around v = 1/2 reveals a distinct asymmetry; R,
maxima between fractional quantum Hall states for v<1/2 are
much larger than those for v>1/2. This increase becomes
increasingly dramatic between v = 2/5, 1/3, and 2/7. Such a high
resistance phase between v =1/3 and 2/7 has also been observed
in GaAs, and was interpreted as the electron Wigner solid pinned
by disorder. Two mechanisms have been identified for the
appearance of the Wigner solid around these filling factors: one is
a large LL mixing, which modifies the ground state energies of
fractional quantum Hall states and Wigner solid;*>1° the other is
short-range disorder>”-?8, Both mechanisms are more pro-
nounced in ZnO-heterostructures than in GaAs?>2°,

In Fig. 2 the apparent high resistance phases are colored and
marked as HRP1, HRP2, and HRP3. On the basis of Wigner solid
studies in other materials system, the characteristics of HRP1,
HRP2, and HRP3 are typical of the Wigner solid. The
temperature dependence of R,, for HRP1, HRP2, and HRP3
resembles the melting of the Wigner solid (Supplementary
Fig. 1a). The non-linear current-voltage characteristics are
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Fig. 2 Temperature-dependent magnetotransport up to 33 T. a R, at T=60 mK (blue trace). The other colors show R,,(B) in the fractional quantum Hall
regime for higher temperatures. The high resistivity phases HRP1, HRP2, and HRP3 are indicated by the shaded region. b Mass of composite fermions
extracted from the temperature dependence of the R, oscillation amplitude. € Temperature dependence of R,, at v =1/2. The decreasing resistance with
increasing temperatures indicates a residual interaction between composite fermions

associated with the depinning of the Wigner solid from the
disorder, when a certain threshold force is exceeded, and its
subsequent sliding along the disorder landscape (Supplementary
Fig. 1b). Thus, the trace of a Wigner solid formation appears
already in HRP1 between v =3/7 and v = 2/5, whereas a larger
R, and I-V non-linearity at HRP2 and HRP3 indicate a stronger
pronounced Wigner solid character.

A non-linear I-V characteristics can also appear in structures
with domain boundaries originating from the sample inhomo-
geneity. To reduce the effect of sample inhomogeneity the
structures were being rotated during the molecular epitaxial
growth and we used a piece of structure next to the center of the
ZnO substrate to ensure a higher sample homogeneity3C.
Although we cannot exclude the effect of sample inhomogeneity
on the sample characteristics, our structure demonstrates
magnetotransport of quality comparable with the best GaAs
structures. Furthermore, as we will demonstrate later in the paper,
the effect of in-plane magnetic field on both the high resistive
phases and the transport around v=1/2 has a largely intrinsic
origin.

HRP1 represents an interesting region. While it shows the
features of an emerging Wigner solid, at the same time it can be
comprised as a part of the R,, oscillations caused by the CFs’
orbital motion in B.g, and therefore can also be attributed to the
liquid phase. We note that the R, amplitude at HRP2 shoots up
so high that it can hardly be associated with a gradual increase of
the Shibnikov-de Haas oscillations amplitude with an increasing
magnetic field. The estimate of the CF mass can be valuable to
characterize the CF liquid phase and to elucidate the character-
istics of region HRP1. Thus, we now analyze the CF mass mcg
around v=1/2 from the temperature dependence of the R,,
oscillation amplitude by using the Lifshitz—Kosevitch formalism
(Supplementary Note 2). Figure 2b displays mcg around v = 1/2,
which extends the linear dependence of mcy on B (Supplemen-
tary Fig. 3) to higher field as mcg/mo=0.047B/T%>. More
noticeable is the increase of mcp over the linear trend when the
2DES approaches the high resistivity phase HRP1.

The increase of the composite fermion mass is the signature of an
enhanced electron—electron interaction, effectively strengthened by

the reduction of kinetic energy, which is brought about by the
electron localization by the magnetic field and/or disorder. An
enhanced mass can also possibly be anticipated when CFs become
more inert due to their localization. Both scenarios for mass
increase signal the formation of a solid state, which is consistent
with observing the traces of the Wigner solid character at HRP1,
and the more strongly pronounced Wigner solid-like character at
HRP2. Our transport experiment cannot distinguish whether the
high resistance phase HRP2 is formed by the electron or composite
fermion. Following the recent theory'® HRP2 should correspond to
an electron crystal. Then the transport characteristics described
above can be treated as experimental attributes of the intricate
phase transition between the composite fermion liquid phase and
electron solid. HRP3 can potentially be attributed to a two-flux
composite fermion Wigner crystal, as it forms in the LL filling
factors attributed to a four-flux composite fermion liquid.

Experiment in tilted magnetic field. The transport properties
discussed above change dramatically when the sample is rotated
in the magnetic field, that is, when an additional field component
is applied parallel to the 2DES. Since the electron spin suscept-
ibility for this structure is about 2, the opposite spin orientation
branch of the lowest LL lies energetically high and is not popu-
lated3!. Thus the spin effects are not anticipated to play a role for
the discussion below. Figure 3a depicts R, traces at several
sample orientations 0 obtained at base temperature and shows the
asymmetrical impact of the in-plane field on the transport for v <
1/2 and v > 1/2 (0 is the tilt angle between the normal of the 2DES
plane and the magnetic field direction). Firstly, one notices that
R, of HRP1, HRP2, and HRP3 increases gradually with an
increasing 0, while R,, minima at v=3/7, 2/5, and 1/3 do not
change significantly. Thus the insulating phase becomes more
pronounced by applying an in-plane field. The temperature
dependence of R,, maxima of the high resistivity phases is
depicted for three representative 8s in Fig. 3b. Furthermore, R,,
around v = 1/2 gains a background, which becomes larger with
the increasing 0. Since magnetotransport experiments in GaAs
demonstrate the extension of the tail of the insulating phase into
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Fig. 3 Magnetotransport in tilted magnetic fields. a The resistance of high resistivity phases HRP1, HRP2, and HRP3 increases with the application of
in-plane magnetic field. The insulating phase shifts towards higher filling factors with increasing in-plane field, as can be seen from the growing background
around v =1/2. Inset: mass of composite fermions evaluated from temperature dependence of R,, oscillation amplitude. b Temperature dependence of

high resistivity phases HRP1, HRP2, and HRP3 at several tilt angles

the v = 1/2 region with an increasing 6°2-33, we may also suppose
that the background forming around v = 1/2 has the same origin
and is associated with the development of the insulating phase
growing towards v = 1/2 and above.

Discussion

A strong in-plane field couples to the orbital motion and
enhances the inter-subband scattering rate34. This will result in an
additional LL broadening and should be particularly effective in
our ZnO heterostructure, since the subband separation in the
confinement potential is of the order of 5meV and the electron
cyclotron energy reaches 3.8 meV at 10 T3>. The scenario of
scattering rate enhancement at high 6 is not consistent with our
experimental data. Indeed, for all tilt angles 0 the R, oscillations
are not damped but rather persist on top of an increasing back-
ground. Both the field where R,, oscillations onset and the
number of R,, oscillations do not change with an increasing
in-plane field strength, whereas an anticipated broader LL ought
to smear out the oscillations and to increase the field where
R, oscillations set on.

Furthermore, we analyze the temperature dependence of the
R, oscillation amplitude and estimate mcr around v=1/2 for
several Os (Supplementary Note 2). The inset of Fig. 3 depicts the
result of this analysis. For v>1/2, mcr does not show any
noticeable change, but it shows a pronounced field and tilt angle
dependence for v < 1/2, that is, for a given perpendicular magnetic
field mcg is heavier at a larger tilt angle. The quantum scattering
time traced as a fitting parameter in the estimation of mcg does
not show a tilt angle dependence around v = 1/2(Supplementary
Fig. 5). This strengthens our concept of negligible change of inter-
subband scattering rate due to the application of in-plane mag-
netic field. The estimation of scattering time becomes more
uncertain at approaching the HRP1 phase. This points to an
inadequate description of high resistivity phases with
Lifschitz-Kosevitch approximation, possibly supporting our point
that the HRP1 phase has a mixed character of state of matter.
Therefore the experimental finding implies that the change in
magnetotransport caused by the in-plane field application has an
intrinsic origin.

The application of an in-plane field can significantly disturb
the electron/CF Fermi contour making it elliptic shaped36-40. The

4

effective particle mass is now given by mx* = , /m; X m;, where m,
and m; are the masses along two prime axises of the ellipse. Such
anisotropy might be responsible for the CF mass enhancement
beyond the mass estimated at zero tilt angle. An enhanced mass
can also signal that the electron-electron interaction becomes
stronger, which brings the system closer to the condition to form
a crystalline phase.

In order to further address the in-plane field induced stabili-
zation of the Wigner solid-like phase we now analyze how much
the in-plane field squeezes the electron wavefunction width, as it
effectively enhances the Coulomb interaction and can affect the
transport properties*! =43, In zero in-plane field the wavefunction
width of the heterostructure is about 10 nm wide3!3°. At 6 = 50°
it is squeezed down to 2.6nm at B =12T, representing the
region v > 1/2, and down to 2.2 nm at B; =17 T, representing the
region v<1/2 (Supplementary Note 3). Since the wavefunction
width reduces significantly with in-plane field on both sides of v
= 1/2 compared with zero in-plane field, the Coulomb interaction
should also be commensurately enhanced around v=1/2.
Nonetheless, mcr defined by the interaction effects remains
almost unchanged for v > 1/2 and no large effect of in-plane field
on transport characteristics is seen in this region. Consequently,
the increase of mcp for v<1/2 is not mainly caused by the
reduced wavefunction width. However, a smaller width of the
wavefunction favors the solid phase over the liquid phase!®. This
can explain an increased resistivity of HRP1, HRP2, and HRP3
phases and the gradual shift of insulating phase towards higher
filling factors. In this scenario, the mcp increase in v < 1/2 region
is consistent with our observation that mcg is larger the closer the
electron system approaches the high resistivity phase, which may
be interpreted as an effective localization of the CF.

Finally, we discuss the filling factor v = 1/2, which is originally
thought to have a Fermi surface of CF (Fig. 1). Figure 4 depicts
the temperature dependence of R,, at several &’s. At =0, con-
sidering the presence of only CF Fermi surface, the logarithmic
temperature dependence of R,, points toward a residual CF
interaction®?>#4, At larger 0 the slope of logarithmic R,, tem-
perature dependence increases, pointing to an increased CF
residual interaction. On the other hand, our experiment
demonstrates the shift of the insulating phase towards
higher filling factors with an increasing 6. Consequently, the state
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Fig. 4 R, temperature dependence at v =1/2. The resistance decreases
with increasing temperature indicating a residual interaction between the
composite fermions at zero tilt angle. The slope becomes more pronounced
at higher tilt angles, i.e., a stronger in-plane field, and points towards a more
robust Wigner solid phase

at v=1/2 is formed by both a CF Fermi liquid with a Fermi
surface and tail of the insulating phase forming in the course of
liquid-solid phase transition. Then the R,, temperature depen-
dence at each 6 in Fig. 4 reflects not only the CF residual inter-
action but also the melting of the intermediate liquid-solid phase
growing towards v=1/2. Giving a small R,, increase between
0=0 and =40 the intermediate phase is absent or its con-
tribution is small at v=1/2 for 6 =0. Our consideration raises
questions about the stability of a CF Fermi surface exposed to a
strong in-plane magnetic field, whereas the 2DES characteristics
in a tilted magnetic field can likely be the attributes of the pre-
cursor for the new insulating state in a strong in-plane magnetic
field proposed by Piot et al.3.

Our experimental data show that the electron system enters a
correlation regime, which reflects the character of both solid and
liquid phases for v <1/2 and can likely be the features of a non-
trivial phase transition in the electron system occupying the
lowest LL. Our experimental results are interpreted within the CF
approach, which has recently attracted renewed attention from
theory predicting that the CF can be Dirac particles**~#3. This
also introduces an exciting perspective for ZnO studies. Our
experimental results display the composite fermion paradigm in a
system distinct from conventional semiconductor systems and
address the question on how the charge carrier system translates
between liquid and solid phases.

Methods

Sample. The sample under study is a MgZnO/ZnO heterostructure (a sequence of
about 500-nm thick epitaxial ZnO film (buffer layer) and 250-nm thick MgZnO
(capping layer) grown on ZnO substrate) with a charge carrier density n = 1.7 x
10" ¢cm~2 and a mobility g = 600,000 cm2V~1s~! at the base temperature of our
dilution refrigerator T'= 60 mK. The LL mixing for this charger carrier density is x
=42atv=1/2.

Magnetotransport in tilted magnetic field. The sample is mounted on a rotating
stage allowing in-situ sample rotation in the magnetic field. The tilt angle 6 is
determined from the shift of R,, resistance minima of the well-known fractional
quantum Hall states.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon request.
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